627 research outputs found

    Going both ways: Immune regulation via CD1d-dependent NKT cells

    Get PDF

    The Effect of Antigen Stimulation on the Migration of Mature T Cells from the Peripheral Lymphoid Tissues to the Thymus

    Get PDF
    Although the maturation and export of T cells from the thymus has been extensively studied, the movement of cells in the opposite direction has been less well documented. In particular, the question of whether T cells which have been activated by antigen in the periphery are more likely to return to the thymus had been raised but not clearly answered. We examined this issue by activating T cells present in the periphery with their cognate antigen, and assessing migration to the thymus. TCR-transgenic cells from OT-I mice (Thy1.2+), which recognise the ovalbumin peptide OVA257–264 in the context of H-2Kb, were transferred into otherwise unmanipulated Thy1.1+ C57BL/6 mice. Recipient mice were injected i.v. with 5 μg peptide (SIINFEKL) approximately 24 hours later. The numbers of donor-derived (Thy1.2+) cells in the thymus and peripheral lymphoid tissue were determined. The results clearly show increased numbers of transgenic cells in the thymus 3 days after antigenic stimulation. However, since numbers of transgenic cells increased in the spleen and LN in about the same proportion, the data do not support the notion that there is highly increased selective migration of activated T cells to the thymus. Rather, they suggest that a sample of peripheral cells enters the thymus each day, and that the mature immigrants detected in the thymus merely reflect the contents of the peripheral T cell pool

    Grand County Agriculture Profile

    Get PDF
    This publication includes a report that gives agricultural facts and statistics pertaining to Grand County

    San Juan County Agriculture Profile

    Get PDF
    This publication includes a report that gives agricultural facts and statistics pertaining to San Juan County

    Sanpete County Agriculture Profile

    Get PDF
    This publication includes a report that gives agricultural facts and statistics pertaining to Sanpete County

    A Critical Role for Natural Killer T Cells in Immunosurveillance of Methylcholanthrene-induced Sarcomas

    Get PDF
    Natural killer (NK) T cells initiate potent antitumor responses when stimulated by exogenous factors such as interleukin (IL)-12 or α-galactosylceramide (α-GalCer), however, it is not clear whether this reflects a physiological role for these cells in tumor immunity. Through adoptive transfer of NK T cells from wild-type to NK T cell–deficient (T cell receptor [TCR] Jα281−/−) mice, we demonstrate a critical role for NK T cells in immunosurveillance of methylcholanthrene (MCA)-induced fibrosarcomas, in the absence of exogenous stimulatory factors. Using the same approach with gene-targeted and/or antibody-depleted donor or recipient mice, we have shown that this effect depends on CD1d recognition and requires the additional involvement of both NK and CD8+ T cells. Interferon-γ production by both NK T cells and downstream, non-NK T cells, is essential for protection, and perforin production by effector cells, but not NK T cells, is also critical. The protective mechanisms in this more physiologically relevant system are distinct from those associated with α-GalCer–induced, NK T cell–mediated, tumor rejection. This study demonstrates that, in addition to their importance in tumor immunotherapy induced by IL-12 or α-GalCer, NK T cells can play a critical role in tumor immunosurveillance, at least against MCA-induced sarcomas, in the absence of exogenous stimulation

    Salt Lake County Agriculture Profile

    Get PDF
    This publication includes a report that gives agricultural facts and statistics pertaining to Salt Lake County

    Sevier County Agriculture Profile

    Get PDF
    This publication includes a report that gives agricultural facts and statistics pertaining to Sevier County

    Chewing the fat on natural killer T cell development

    Get PDF
    Natural killer T cells (NKT cells) are selected in the thymus by self-glycolipid antigens presented by CD1d molecules. It is currently thought that one specific component of the lysosomal processing pathway, which leads to the production of isoglobotrihexosylceramide (iGb3), is essential for normal NKT cell development. New evidence now shows that NKT cell development can be disrupted by a diverse range of mutations that interfere with different elements of the lysosomal processing and degradation of glycolipids. This suggests that lysosomal storage diseases (LSDs) in general, rather than one specific defect, can disrupt CD1d antigen presentation, leading to impaired development of NKT cells
    • …
    corecore